Enamelin Is Critical for Ameloblast Integrity and Enamel Ultrastructure Formation
نویسندگان
چکیده
Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam-/- mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam-/- mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam-/- background did not fully recover enamel formation while a medium expresser in the Enam+/- background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation.
منابع مشابه
Comparative temporospatial expression profiling of murine amelotin protein during amelogenesis.
Tooth enamel is formed in a typical biomineralization process under the guidance of specific organic components. Amelotin (AMTN) is a recently identified, secreted protein that is transcribed predominantly during the maturation stage of enamel formation, but its protein expression profile throughout amelogenesis has not been described in detail. The main objective of this study was to define th...
متن کاملRole of protein delta homolog 1 in the proliferation and differentiation of ameloblasts
Protein delta homolog 1 (DLK1) regulates the odontoblastic differentiation of human dental pulp stem cells. It was hypothesized that DLK1 may exert regulatory effects on epithelial‑mesenchymal interactions in tooth development. The present study investigated the expression of DLK1 during the development of mouse enamel and its role in the proliferation and differentiation of ameloblast‑lineage ...
متن کاملAmelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress
'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated un...
متن کاملMolecular and circadian controls of ameloblasts.
Stage-specific expression of ameloblast-specific genes is controlled by differential expression of transcription factors. In addition, ameloblasts follow daily rhythms in their main activities (i.e. enamel protein secretion and enamel mineralization). This time-related control is orchestrated by oscillations of clock proteins involved in the regulation of circadian rhythms. Our aim was to ident...
متن کاملCtip2/Bcl11b controls ameloblast formation during mammalian odontogenesis.
The transcription factor Ctip2/Bcl11b plays essential roles in developmental processes of the immune and central nervous systems and skin. Here we show that Ctip2 also plays a key role in tooth development. Ctip2 is highly expressed in the ectodermal components of the developing tooth, including inner and outer enamel epithelia, stellate reticulum, stratum intermedium, and the ameloblast cell l...
متن کامل